Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 44(9): 1322-1333, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34710003

RESUMO

Manganese is naturally present in water, but its increased concentration in potable water is undesirable for multiple reasons. This study investigates an alternative method of demanganization by a newly synthesized TiO2-based adsorbent prepared through the transformation of titanyl sulphate monohydrate to amorphous sodium titanate. Its adsorption capacity for Mn2+ was determined, while a range of influential factors, such as the effect of contact time, adsorbent dosage, pH value, and added ions was evaluated. The adsorbent appeared highly effective for Mn2+ removal owing to its unique characteristics. Besides adsorption via electrostatic interactions, ion-exchange was also involved in the Mn2+ removal. Although the Mn2+ removal occurred within the whole investigated pH range of 4-8, the maximum was achieved at pH 7, with qe = 73.83 mg g-1. Equilibrium data revealed a good correlation with Langmuir isotherm in the absence of any ions or in the presence of monovalent co-existing ions, while the results in the presence of divalent co-existing ions showed a better fit to Freundlich isotherm. Additionally, the presence of monovalent cations (Na+, K+) only slightly decreased the Mn2+ removal efficiency as compared to divalent cations (Ca2+, Mg2+) that caused a greater decrease; however, the effect of anions (Cl-, SO42-) was insignificant. To provide insight into the adsorbent safety, the toxicity assessment was performed and showed no harmful effect on cell activity. Furthermore, the residual concentration of titanium after adsorption was always below the detection limit. The results imply that the synthesized TiO2-based adsorbent is a safe promising alternative method for demanganization.Highlights The synthesis of amorphous TiO2-based adsorbent was presented.The TiO2-based adsorbent was found to be efficient for Mn2+ removal.The Mn2+ removal mechanisms were adsorption and ion-exchange.Increasing pH enhanced the efficiency of Mn2+ removal.Divalent cations decreased the Mn2+ removal efficiency more than monovalent cations.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Manganês , Adsorção , Cátions Bivalentes , Íons , Cátions Monovalentes , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
J Hazard Mater ; 444(Pt A): 130424, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410247

RESUMO

Widespread pollution of aquatic environments by microplastics (MPs) is a serious environmental threat. Despite the knowledge of their occurrence and properties rapidly evolving, the potential leaching from MPs remains largely unexplored. In this study, 16 different types of MPs prepared from consumer products were kept in long-term contact with water, while the leachates were continuously analysed. Most of the MPs released significant amounts of dissolved organic carbon, up to approximately 65 mg per g MPs after 12 weeks of leaching, and some MPs also released dissolved inorganic carbon. Other elements identified in the leachates were Al, Ba, Ca, Fe, K, Mg, Mn, Na, Si, and Zn. Of those, Ca, K, and Na were detected most frequently, while Ca reached the highest amounts (up to almost 2.5 mg per g MPs). Additionally, 80 organic individuals were tentatively identified in the leachates, mostly esters, alcohols, and carboxylic acids. Some compounds considered harmful to human health and/or the environment were detected, e.g., bisphenol A or phthalate esters. The current results provide insight into the transfer of various compounds from MPs to ambient water, which might have consequences on the fluxes of carbon and metals, as well as of specific organic contaminants.


Assuntos
Microplásticos , Água , Humanos , Plásticos , Carbono , Ésteres
3.
Environ Technol ; 43(8): 1152-1162, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32885734

RESUMO

Low molecular weight algal organic matter (AOM), as a frequent water contaminant with poor coagulation efficiency, adversely affects the quality of produced water and serves as a source of potentially carcinogenic disinfection by-products. AOM removal from water is inevitable to eliminate the negative health and environmental impacts. This research evaluates the removal of arginine, phenylalanine and aspartic acid, which are amino acids abundant in AOM. Adsorption experiments were performed at 10, 18 and 25 °C and pH 5, 7 and 9 using two different activated carbons (FTL, PIC). Amino acids showed endothermic adsorption behaviour, with a higher removal at higher temperature. Higher temperature increased the diffusion of amino acid molecules, reduced the solution viscosity, or enhanced the hydrophobic interactions contributing to adsorption. The effect of temperature manifested differently during experiments depending on the chemical nature of the amino acids, the pH value and the surface properties of the carbon. Phenylalanine isotherms showed specific waves (Langmuir type 4). pH had a greater effect on arginine adsorption than did temperature. Aspartic acid isotherms exhibited a decrease in adsorption at higher pH values and higher temperatures. The principal mechanisms involved in amino acid adsorption were hydrophobic interactions, electrostatic interactions or hydrogen bonds.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/química
4.
Sci Total Environ ; 799: 149455, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364285

RESUMO

The increasing occurrence of algal and cyanobacterial blooms and the related formation of algal organic matter (AOM) is a worldwide issue that endangers the quality of freshwater sources and affects water treatment processes. The associated problems involve the production of toxins or taste and odor compounds, increasing coagulant demand, inhibition of removal of other polluting compounds, and in many cases, AOM acts as a precursor of disinfection by-products. Previous research has shown that for sufficient AOM removal, the conventional drinking water treatment based on coagulation/flocculation must be often accompanied by additional polishing technologies such as adsorption onto activated carbon (AC). This state-of-the-art review is intended to serve as a summary of the most current research on the adsorption of AOM onto AC concerning drinking water treatment. It summarizes emerging trends in this field with an emphasis on the type of AOM compounds removed and on the adsorption mechanisms and influencing factors involved. Additionally, also the principles of competitive adsorption of AOM and other organic pollutants are elaborated. Further, this paper also synthesizes previous knowledge on combining AC adsorption with other treatment techniques for enhanced AOM removal in order to provide a practical resource for researchers, water treatment plant operators and engineers. Finally, research gaps regarding the AOM adsorption onto AC are identified, including, e.g., adsorption of AOM residuals recalcitrant to coagulation/flocculation, suitability of pre-oxidation of AOM prior to the AC adsorption, relationships between the solution properties and AOM adsorption behaviour, or AOM as a cause of competitive adsorption. Also, focus should be laid on continuous flow column experiments using water with multi-component composition, because these would greatly contribute to transferring the theoretical knowledge to practice.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Desinfecção , Poluentes Químicos da Água/análise
5.
J Environ Sci (China) ; 98: 124-133, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33097143

RESUMO

Ozonation pretreatment is typically implemented to improve algal cell coagulation. However, knowledge on the effect of ozonation on the characteristics and coagulation of associated algal organic matter, particularly cellular organic matter (COM), which is extensively released during algal bloom decay, is limited. Hence, this study aimed to elucidate the impact of ozonation applied before the coagulation of dissolved COM from the cyanobacteria Microcystis aeruginosa. Additionally, the degradation of microcystins (MCs) naturally present in the COM matrix was investigated. A range of ozone doses (0.1-1.0 mg O3/mg of dissolved organic carbon - DOC) and ozonation pH values (pH 5, 7 and 9) were tested, while aluminium and ferric sulphate coagulants were used for subsequent coagulation. Despite negligible COM removal, ozonation itself eliminated MCs, and a lower ozone dose was required when performing ozonation at acidic or neutral pH (0.4 mg O3/mg DOC at pH 5 and 7 compared to 0.8 mg O3/mg DOC at pH 9). Enhanced MC degradation and a similar pattern of pH dependence were observed after preozonation-coagulation, whereas coagulation alone did not sufficiently remove MCs. In contrast to the benefits of MC depletion, preozonation using ≥ 0.4 mg O3/mg DOC decreased the coagulation efficiency (from 42%/48% to 28%-38%/41%-44% using Al/Fe-based coagulants), which was more severe with increasing ozone dosage. Coagulation was also influenced by the preozonation pH, where pH 9 caused the lowest reduction in COM removal. The results indicate that ozonation efficiently removes MCs, but its employment before COM coagulation is disputable due to the deterioration of coagulation.


Assuntos
Microcystis , Ozônio , Purificação da Água
6.
Sci Total Environ ; 741: 140236, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603938

RESUMO

Microplastics (MPs) are emerging globally distributed pollutants of aquatic environments, and little is known about their fate at drinking water treatment plants (DWTPs), which provide a barrier preventing MPs from entering water for human consumption. This study investigated MPs ≥ 1 µm in raw and treated water of two DWTPs that both lie on the same river, but the local quality of water and the treatment technology applied differ. In the case of the more complex DWTP, MPs were analysed at 4 additional sampling sites along the treatment chain. The content of MPs varied greatly between the DWTPs. There were 23 ±â€¯2 and 14 ±â€¯1 MPs L-1 in raw and treated water, respectively, at one DWTP, and 1296 ±â€¯35 and 151 ±â€¯4 MPs L-1 at the other. Nevertheless, MPs comprised only a minor proportion (<0.02%) of all detected particles at both DWTPs. With regard to size and shape of MPs, the majority (>70%) were smaller than 10 µm, and only fragments and fibres were found, while fragments clearly prevailed. The most frequently occurring materials were cellulose acetate, polyethylene terephthalate, polyvinyl chloride, polyethylene, and polypropylene. Much higher total removal of MPs was achieved at the DWTP with a higher initial MP load and more complicated treatment (removal of 88% versus 40%); coagulation-flocculation-sedimentation, deep-bed filtration through clay-based material, and granular activated carbon filtration contributed to MP elimination by 62%, 20%, and 6%, respectively. Additionally, results from this more complex DWTP enabled to observe relationships between the removal efficiency and size and shape of MPs, particularly in the case of the filtration steps.


Assuntos
Água Potável , Poluentes Químicos da Água/análise , Purificação da Água , Microplásticos , Plásticos , Rios
7.
J Environ Sci (China) ; 80: 116-127, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30952329

RESUMO

Coagulation followed by floc separation is a key process for the removal of algal organic matter (AOM) in water treatment. Besides optimizing coagulation parameters, knowledge of the properties of AOM-flocs is essential to maximizing AOM removal. However, the impact of AOM on the floc properties remains unclear. This study investigated how peptides/proteins derived from the cellular organic matter (COM) of the cyanobacterium Microcystis aeruginosa influenced the size, structure, and shape of flocs formed at different shear rates (G). Flocs formed by kaolinite, COM-peptides/proteins and a mixture of the same were studied, and the effect of intermolecular interactions between floc components on floc properties was assessed. The coagulation experiments were performed in a Taylor-Couette reactor, with aluminum (Al) or ferric sulphate (Fe) utilized as coagulants. Image analysis was performed to gauge floc size and obtain data on fractal dimension. It was found that floc properties were affected by the presence of the COM-peptides/proteins and the coagulant used. COM-peptides/proteins increased floc size and porosity and widened floc size distributions. The Fe coagulant produced larger and less compact flocs than Al coagulant. Moreover, the decrease in floc size that occurred in parallel with increase in shear rate was not smooth in progress. A rapid change for the kaolinite-coagulant suspension and two rapid changes for the suspensions containing COM were observed. These were attributed to various intermolecular interactions between floc components participating in coagulation at different G. Based on the results obtained, shear rates suitable for efficient separation of flocs containing COM were suggested.


Assuntos
Microcystis , Microbiologia da Água , Purificação da Água/métodos , Proteínas de Bactérias , Floculação , Peptídeos
8.
Sci Total Environ ; 667: 730-740, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851606

RESUMO

Microplastics (MPs) have recently been detected in oceans, seas and freshwater bodies worldwide, yet few studies have revealed the occurrence of MPs in potable water. Although the potential toxicological effects of MPs are still largely unknown, their presence in water intended for human consumption deserves attention. Drinking water treatment plants (DWTPs) pose a barrier for MPs to enter drinking water; thus, the fate of MPs at DWTPs is of great interest. This review includes a summary of the available information on MPs in drinking water sources and in potable water, discusses the current knowledge on MP removal by different water treatment processes, and identifies the research needs regarding MP removal by DWTP technologies. A comparison of MPs with other common pollution agents is also provided. We concluded that special attention should be given to small-size MPs (in the range of several micrometres) and that the relationship between MP character and behaviour during distinct treatment processes should be explored.


Assuntos
Água Potável/química , Plásticos/análise , Poluentes Químicos da Água/análise , Purificação da Água , Monitoramento Ambiental
9.
J Environ Sci (China) ; 79: 25-34, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784448

RESUMO

The removal of algal organic matter (AOM) is a growing concern for the water treatment industry worldwide. The current study investigates coagulation of non-proteinaceous AOM (AOM after protein separation), which has been minimally explored compared with proteinaceous fractions. Jar tests with either aluminum sulphate (alum) or polyaluminium chloride (PACl) were performed at doses of 0.2-3.0 mg Al per 1 mg of dissolved organic carbon in the pH range 3.0-10.5. Additionally, non-proteinaceous matter was characterized in terms of charge, molecular weight and carbohydrate content to assess the treatability of its different fractions. Results showed that only up to 25% of non-proteinaceous AOM can be removed by coagulation under optimized conditions. The optimal coagulation pH (6.6-8.0 for alum and 7.5-9.0 for PACl) and low surface charge of the removed fraction indicated that the prevailing coagulation mechanism was adsorption of non-proteinaceous matter onto aluminum hydroxide precipitates. The lowest residual Al concentrations were achieved in very narrow pH ranges, especially in the case of PACl. High-molecular weight saccharide-like organics were amenable to coagulation compared to low-molecular weight (<3 kDa) substances. Their high content in non-proteinaceous matter (about 67%) was the reason for its low removal. Comparison with our previous studies implies that proteinaceous and non-proteinaceous matter is coagulated under different conditions due to the employment of diverse coagulation mechanisms. The study suggests that further research should focus on the removal of low-molecular weight AOM, reluctant to coagulate, with other treatment processes to minimize its detrimental effect on water safety.


Assuntos
Compostos de Alúmen/química , Hidróxido de Alumínio/química , Chlorella vulgaris , Poluentes Químicos da Água/química , Purificação da Água/métodos , Carbono/química , Floculação
10.
Sci Total Environ ; 643: 1644-1651, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30104017

RESUMO

The study investigates the content of microplastic particles in freshwater and drinking water. Specifically, three water treatment plants (WTPs) supplied by different kinds of water bodies were selected and their raw and treated water was analysed for microplastics (MPs). Microplastics were found in all water samples and their average abundance ranged from 1473 ±â€¯34 to 3605 ±â€¯497 particles L-1 in raw water and from 338 ±â€¯76 to 628 ±â€¯28 particles L-1 in treated water, depending on the WTP. This study is one of very few that determine microplastics down to the size of 1 µm, while MPs smaller than 10 µm were the most plentiful in both raw and treated water samples, accounting for up to 95%. Further, MPs were divided into three categories according to their shape. Fragments clearly prevailed at two of the WTPs and fibres together with fragments predominated at one case. Despite 12 different materials forming the microplastics being identified, the majority of the MPs (>70%) comprised of PET (polyethylene terephthalate), PP (polypropylene) and PE (polyethylene). This study contributes to fill the knowledge gap in the field of emerging microplastic pollution of drinking water and water sources, which is of concern due to the potential exposure of microplastics to humans.


Assuntos
Água Potável/química , Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...